Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 62
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-37837856

RÉSUMÉ

Until 1993, chlordecone (CLD) was extensively used in banana fields in French West Indies. In a previous study, CLD was detected in 90 % of Martinican and Guadeloupean adult's serum. In order to simplify the analyses of CLD in the serum, a new QuEChERS-HPLC-MS/MS method was implemented and validated by the Pasteur Institute of Guadeloupe (IPG). This method was validated with accuracy profiles according to the French Standard NF V03-110 plus the ISO 15189 and European guidelines. Linearity, repeatability, accuracy, intermediate precision, specificity, limit of detection (LOD), limit of quantification (LOQ) and uncertainty were determined. The accuracy profile allowed the method to be validated between 0.06  µg L-1 and 1.00  µg L-1 of serum. The LOD was 0.02  µg L-1, the LOQ was 0.06  µg L-1 and the uncertainty of the method was 21 %. A comparison of 49 serum samples between the IPG (LC-MS/MS) and the LEAE-CART (GC-HRMS) laboratories demonstrated that this new method can reliably determine CLD in human serum. Stability tests were performed and duration of the storage of raw samples and extracts before analysis by HPLC-MS/MS. Raw samples were stable after collection for at least one week at 5 °C or 25 °C and for at least 3 months at -20 °C. Extracts in acetonitrile were stable for at least 1 month at -20 °C. These stability results facilitate the daily use of the method. This method should help the entire population of Guadeloupe and Martinique by allowing a routinely analyzed for CLD and will be useful for future projects aimed at improving population health monitoring.


Sujet(s)
Chlordécone , Insecticides , Humains , Chlordécone/analyse , Insecticides/analyse , Chromatographie en phase liquide à haute performance , Spectrométrie de masse en tandem , Chromatographie en phase liquide
2.
Parasit Vectors ; 16(1): 276, 2023 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-37563598

RÉSUMÉ

BACKGROUND: Angiostrongylus cantonensis (rat lungworm) is the main pathogen responsible for eosinophilic meningitis in humans. One of its intermediate snail hosts, Achatina fulica, was already present in many countries around the world before it appeared in the West Indies in the late 1980s. In the French territories in the Caribbean and northern South America, the first cases of human neuroangiostrongyliasis were reported in Martinique, Guadeloupe and French Guiana in 2002, 2013 and 2017, respectively. In order to better characterize angiostrongyliasis in Guadeloupe, particularly its geographical origin and route of introduction, we undertook molecular characterization of adult worms of Angiostrongylus cantonensis and its intermediate host Achatina fulica. METHODS: Genomic DNA of adult Angiostrongylus cantonensis and Achatina fulica was extracted and amplified by polymerase chain reaction (PCR) targeting the mitochondrial genes cytochrome B and C for A. cantonensis and 16S ribosomal RNA for A. fulica. The PCR products were sequenced and studied by phylogenetic analysis. RESULTS: Cytochrome B and cytochrome C molecular markers indicate a monophyletic lineage of A. cantonensis adult worms in Guadeloupe. Two sequences of A. fulica were identified. CONCLUSIONS: These results confirm the recent introduction of both Angiostrongylus cantonensis and Achatina fulica into Guadeloupe. Achatina fulica in Guadeloupe shares a common origin with those in Barbados and New Caledonia, while Angiostrongylus cantonensis in Guadeloupe shares a common origin with those in Brazil, Hawaii and Japan.


Sujet(s)
Angiostrongylus cantonensis , Angiostrongylus , Infections à Strongylida , Adulte , Rats , Humains , Animaux , Angiostrongylus cantonensis/génétique , Phylogenèse , Guadeloupe , Cytochromes b/génétique , Escargots , Brésil , Infections à Strongylida/médecine vétérinaire
3.
Sci Total Environ ; 900: 165816, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-37506913

RÉSUMÉ

Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.


Sujet(s)
Amoeba , Microbiote , Humains , Eau , ARN ribosomique 16S/génétique , Antagonistes des récepteurs aux angiotensines , Inhibiteurs de l'enzyme de conversion de l'angiotensine , Bactéries/génétique
4.
Viruses ; 15(6)2023 05 29.
Article de Anglais | MEDLINE | ID: mdl-37376570

RÉSUMÉ

French Guiana (FG), a French overseas territory in South America, is susceptible to tropical diseases, including arboviruses. The tropical climate supports the proliferation and establishment of vectors, making it difficult to control transmission. In the last ten years, FG has experienced large outbreaks of imported arboviruses such as Chikungunya and Zika, as well as endemic arboviruses such as dengue, Yellow fever, and Oropouche virus. Epidemiological surveillance is challenging due to the differing distributions and behaviors of vectors. This article aims to summarize the current knowledge of these arboviruses in FG and discuss the challenges of arbovirus emergence and reemergence. Effective control measures are hampered by the nonspecific clinical presentation of these diseases, as well as the Aedes aegypti mosquito's resistance to insecticides. Despite the high seroprevalence of certain viruses, the possibility of new epidemics cannot be ruled out. Therefore, active epidemiological surveillance is needed to identify potential outbreaks, and an adequate sentinel surveillance system and broad virological diagnostic panel are being developed in FG to improve disease management.


Sujet(s)
Aedes , Infections à arbovirus , Arbovirus , Fièvre chikungunya , Dengue , Infection par le virus Zika , Virus Zika , Animaux , Humains , Infections à arbovirus/diagnostic , Infections à arbovirus/épidémiologie , Guyane française/épidémiologie , Études séroépidémiologiques , Fièvre chikungunya/épidémiologie , Infection par le virus Zika/épidémiologie , Amérique du Sud/épidémiologie , Dengue/diagnostic , Dengue/épidémiologie
5.
BMC Genom Data ; 24(1): 16, 2023 03 11.
Article de Anglais | MEDLINE | ID: mdl-36906565

RÉSUMÉ

OBJECTIVES: The Enterobacter cloacae complex is considered an important opportunistic pathogen. It comprises many members that remain difficult to delineate by phenotypic approaches. Despite its importance in human infection, there is a lack of information on associated members in other compartments. Here we report the first de novo assembled and annotated whole-genome sequence of a E. chengduensis strain isolated from the environment. DATA DESCRIPTION: ECC445 specimen was isolated in 2018 from a drinking water catchment point in Guadeloupe. It was clearly related to E. chengduensis species according to hsp60 typing and genomic comparison. Its whole-genome sequence is 5,211,280-bp long divided into 68 contigs, and presents a G + C content of 55.78%. This genome and associated datasets provided here will serve as a useful resource for further analyses of this rarely reported Enterobacter species.


Sujet(s)
Enterobacter cloacae , Génome bactérien , Humains , Enterobacter cloacae/génétique , Antilles , Eau douce
6.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Article de Anglais | MEDLINE | ID: mdl-36290101

RÉSUMÉ

Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-ß-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.

7.
Microbiol Spectr ; 10(5): e0124222, 2022 10 26.
Article de Anglais | MEDLINE | ID: mdl-36094181

RÉSUMÉ

Guadeloupe (French West Indies), a Caribbean island, is an ideal place to study the reservoirs of the Klebsiella pneumoniae species complex (KpSC) and identify the routes of transmission between human and nonhuman sources due to its insularity, small population size, and small area. Here, we report an analysis of 590 biological samples, 546 KpSC isolates, and 331 genome sequences collected between January 2018 and May 2019. The KpSC appears to be common whatever the source. Extended-spectrum-ß-lactamase (ESBL)-producing isolates (21.4%) belonged to K. pneumoniae sensu stricto (phylogroup Kp1), and all but one were recovered from the hospital setting. The distribution of species and phylogroups across the different niches was clearly nonrandom, with a distinct separation of Kp1 and Klebsiella variicola (Kp3). The most frequent sequence types (STs) (≥5 isolates) were previously recognized as high-risk multidrug-resistant (MDR) clones, namely, ST17, ST307, ST11, ST147, ST152, and ST45. Only 8 out of the 63 STs (12.7%) associated with human isolates were also found in nonhuman sources. A total of 22 KpSC isolates were defined as hypervirulent: 15 associated with human infections (9.8% of all human isolates), 4 (8.9%) associated with dogs, and 3 (15%) associated with pigs. Most of the human isolates (33.3%) belonged to the globally successful sublineage CG23-I. ST86 was the only clone shared by a human and a nonhuman (dog) source. Our work shows the limited transmission of KpSC isolates between human and nonhuman sources and points to the hospital setting as a cornerstone of the spread of MDR clones and antibiotic resistance genes. IMPORTANCE In this study, we characterized the presence and genomic features of isolates of the Klebsiella pneumoniae species complex (KpSC) from human and nonhuman sources in Guadeloupe (French West Indies) in order to identify the reservoirs and routes of transmission. This is the first study in an island environment, an ideal setting that limits the contribution of external imports. Our data showed the limited transmission of KpSC isolates between the different compartments. In contrast, we identified the hospital setting as the epicenter of antibiotic resistance due to the nosocomial spread of successful multidrug-resistant (MDR) K. pneumoniae clones and antibiotic resistance genes. Ecological barriers and/or limited exposure may restrict spread from the hospital setting to other reservoirs and vice versa. These results highlight the need for control strategies focused on health care centers, using genomic surveillance to limit the spread, particularly of high-risk clones, of this important group of MDR pathogens.


Sujet(s)
Infections à Klebsiella , Klebsiella pneumoniae , Animaux , Chiens , Humains , Antibactériens/pharmacologie , bêta-Lactamases/génétique , Multirésistance bactérienne aux médicaments/génétique , Guadeloupe/épidémiologie , Infections à Klebsiella/épidémiologie , Klebsiella pneumoniae/génétique , Tests de sensibilité microbienne , Suidae , Zoonoses bactériennes
8.
BMC Bioinformatics ; 23(1): 268, 2022 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-35804320

RÉSUMÉ

BACKGROUND: Biological sequences are increasing rapidly and exponentially worldwide. Nucleotide sequence databases play an important role in providing meaningful genomic information on a variety of biological organisms. RESULTS: The getSequenceInfo software tool allows to access sequence information from various public repositories (GenBank, RefSeq, and the European Nucleotide Archive), and is compatible with different operating systems (Linux, MacOS, and Microsoft Windows) in a programmatic way (command line) or as a graphical user interface. getSequenceInfo or gSeqI v1.0 should help users to get some information on queried sequences that could be useful for specific studies (e.g. the country of origin/isolation or the release date of queried sequences). Queries can be made to retrieve sequence data based on a given kingdom and species, or from a given date. This program allows the separation between chromosomes and plasmids (or other genetic elements/components) by arranging each component in a given folder. Some basic statistics are also performed by the program (such as the calculation of GC content for queried assemblies). An empirically designed nucleotide ratio is calculated using nucleotide information in order to tentatively provide a "NucleScore" for studied genome assemblies. Besides the main gSeqI tool, other additional tools have been developed to perform various tasks related to sequence analysis. CONCLUSION: The aim of this study is to democratize the use of public repositories in programmatic ways, and to facilitate sequence data analysis in a pedagogical perspective. Output results are available in FASTA, FASTQ, Excel/TSV or HTML formats. The program is freely available at: https://github.com/karubiotools/getSequenceInfo . getSequenceInfo and supplementary tools are partly available through the recently released Galaxy KaruBioNet platform ( http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html ).


Sujet(s)
Génome , Logiciel , Bases de données d'acides nucléiques , Génomique , Nucléotides
9.
Front Microbiol ; 13: 882422, 2022.
Article de Anglais | MEDLINE | ID: mdl-35651489

RÉSUMÉ

Extended-spectrum ß-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.

10.
Front Microbiol ; 13: 1056418, 2022.
Article de Anglais | MEDLINE | ID: mdl-36817109

RÉSUMÉ

Introduction: Free-living amoebae of the Naegleria genus belong to the major protist clade Heterolobosea and are ubiquitously distributed in soil and freshwater habitats. Of the 47 Naegleria species described, N. fowleri is the only one being pathogenic to humans, causing a rare but fulminant primary amoebic meningoencephalitis. Some Naegleria genome sequences are publicly available, but the genetic basis for Naegleria diversity and ability to thrive in diverse environments (including human brain) remains unclear. Methods: Herein, we constructed a high-quality Naegleria genus pangenome to obtain a comprehensive catalog of genes encoded by these amoebae. For this, we first sequenced, assembled, and annotated six new Naegleria genomes. Results and Discussion: Genome architecture analyses revealed that Naegleria may use genome plasticity features such as ploidy/aneuploidy to modulate their behavior in different environments. When comparing 14 near-to-complete genome sequences, our results estimated the theoretical Naegleria pangenome as a closed genome, with 13,943 genes, including 3,563 core and 10,380 accessory genes. The functional annotations revealed that a large fraction of Naegleria genes show significant sequence similarity with those already described in other kingdoms, namely Animalia and Plantae. Comparative analyses highlighted a remarkable genomic heterogeneity, even for closely related strains and demonstrate that Naegleria harbors extensive genome variability, reflected in different metabolic repertoires. If Naegleria core genome was enriched in conserved genes essential for metabolic, regulatory and survival processes, the accessory genome revealed the presence of genes involved in stress response, macromolecule modifications, cell signaling and immune response. Commonly reported N. fowleri virulence-associated genes were present in both core and accessory genomes, suggesting that N. fowleri's ability to infect human brain could be related to its unique species-specific genes (mostly of unknown function) and/or to differential gene expression. The construction of Naegleria first pangenome allowed us to move away from a single reference genome (that does not necessarily represent each species as a whole) and to identify essential and dispensable genes in Naegleria evolution, diversity and biology, paving the way for further genomic and post-genomic studies.

11.
Microbiol Resour Announc ; 10(35): e0060221, 2021 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-34472977

RÉSUMÉ

Here, we describe the genome sequence of ECC486. This Enterobacter oligotrophicus strain was isolated from a wild specimen of Anolis marmoratus speciosus, a lizard endemic to the territory of Guadeloupe (French West Indies). Its draft genome sequence consists of 40 contigs and contains a total of 4,504,233 bp, with a G+C content of 54.1%.

12.
Front Microbiol ; 12: 628058, 2021.
Article de Anglais | MEDLINE | ID: mdl-34248862

RÉSUMÉ

Species belonging to Enterobacter cloacae complex have been isolated in numerous environments and samples of various origins. They are also involved in opportunistic infections in plants, animals, and humans. Previous prospection in Guadeloupe (French West Indies) indicated a high frequency of E. cloacae complex strains resistant to third-generation cephalosporins (3GCs) in a local lizard population (Anolis marmoratus), but knowledge of the distribution and resistance of these strains in humans and the environment is limited. The aim of this study was to compare the distribution and antibiotic susceptibility pattern of E. cloacae complex members from different sources in a "one health" approach and to find possible explanations for the high level of resistance in non-human samples. E. cloacae complex strains were collected between January 2017 and the end of 2018 from anoles, farm animals, local fresh produce, water, and clinical human samples. Isolates were characterized by the heat-shock protein 60 gene-fragment typing method, and whole-genome sequencing was conducted on the most frequent clusters (i.e., C-VI and C-VIII). The prevalence of resistance to 3GCs was relatively high (56/346, 16.2%) in non-human samples. The associated resistance mechanism was related to an AmpC overproduction; however, in human samples, most of the resistant strains (40/62) produced an extended-spectrum beta-lactamase. No relation was found between resistance in isolates from wild anoles (35/168) and human activities. Specific core-genome phylogenetic analysis highlighted an important diversity in this bacterial population and no wide circulation among the different compartments. In our setting, the mutations responsible for resistance to 3GCs, especially in ampD, were diverse and not compartment specific. In conclusion, high levels of resistance in non-human E. cloacae complex isolates are probably due to environmental factors that favor the selection of these resistant strains, and this will be explored further.

13.
BMC Vet Res ; 17(1): 116, 2021 Mar 08.
Article de Anglais | MEDLINE | ID: mdl-33685450

RÉSUMÉ

BACKGROUND: Selection pressure exerted by use of antibiotics in both human and veterinary medicine is responsible for increasing antimicrobial resistance (AMR). The objectives of this study were to better understand antimicrobial use in pigs, beef cattle, and poultry on farms on Guadeloupe, French West Indies, and to acquire data on AMR in Escherichia coli in these food-producing animals. A cross-sectional survey was conducted at 45 farms on Guadeloupe, and practical use of antimicrobials was documented in declarative interviews between March and July 2018. A total of 216 fecal samples were collected between January 2018 and May 2019, comprising 124 from pigs, 75 from beef cattle, and 17 from poultry litter. E. coli isolates were obtained for further testing by isolation and identification from field samples. Antimicrobial susceptibility testing and screening for blaCTX-M, blaTEM, tetA, and tetB resistance genes by polymerase chain reaction on extracted genomic DNA were performed. RESULTS: The study showed rational use of antimicrobials, consisting of occasional use for curative treatment by veterinary prescription. Tetracycline was the most commonly used antimicrobial, but its use was not correlated to E. coli resistance. Extended-spectrum ß-lactamase (ESBL) E. coli isolates were detected in 7.3% of pigs, 14.7% of beef cattle, and 35.3% of poultry. blaCTX-M-1 was the predominant gene found in ESBL-E. coli isolates (68.8%), followed by blaCTX-M-15 (31.3%). CONCLUSION: Despite rational use of antimicrobials, the rate of ESBL-E. coli in food-producing animals in Guadeloupe, although moderate, is a concern. Further studies are in progress to better define the genetic background of the ESBL-E. coli isolates.


Sujet(s)
Antibactériens/pharmacologie , Résistance bactérienne aux médicaments/génétique , Escherichia coli/génétique , Animaux , Antibactériens/administration et posologie , Bovins/microbiologie , Études transversales , Escherichia coli/effets des médicaments et des substances chimiques , Infections à Escherichia coli/médecine vétérinaire , Fèces/microbiologie , Guadeloupe , Volaille/microbiologie , Suidae/microbiologie , bêta-Lactamases/métabolisme
14.
Article de Anglais | MEDLINE | ID: mdl-33361294

RÉSUMÉ

Wastewater treatment plants are considered hot spots for antibiotic resistance. Most studies have addressed the impact on the aquatic environment, as water is an important source of anthropogenic pollutants. Few investigations have been conducted on terrestrial animals living near treatment ponds. We isolated extended-spectrum-ß-lactamase Enterobacter cloacae complex-producing strains from 35 clinical isolates, 29 samples of wastewater, 19 wild animals, and 10 domestic animals living in the hospital sewers and at or near a wastewater treatment plant to study the dissemination of clinically relevant resistance through hospital and urban effluents. After comparison of the antibiotic-resistant profiles of E. cloacae complex strains, a more detailed analysis of 41 whole-genome-sequenced strains demonstrated that the most common sequence type, ST114 (n = 20), was present in human (n = 9) and nonhuman (n = 11) samples, with a close genetic relatedness. Whole-genome sequencing confirmed local circulation of this pathogenic lineage in diverse animal species. In addition, nanopore sequencing and specific synteny of an IncHI2/ST1/blaCTX-M-15 plasmid recovered on the majority of these ST114 clones (n = 18) indicated successful worldwide diffusion of this mobile genetic element.


Sujet(s)
Enterobacter cloacae , Infections à Enterobacteriaceae , Animaux , Antibactériens/pharmacologie , Enterobacter cloacae/génétique , Guadeloupe , Hôpitaux , Humains , Tests de sensibilité microbienne , Plasmides/génétique , Antilles , bêta-Lactamases/génétique
15.
Front Microbiol ; 11: 1524, 2020.
Article de Anglais | MEDLINE | ID: mdl-32754130

RÉSUMÉ

Limited data are available on the contribution of wildlife to the spread of antibacterial resistance. We determined the prevalence of resistance to antibiotics in Escherichia coli isolates collected from wild animals in 2013 and 2014 and the genetic basis for resistance to third-generation cephalosporin in Guadeloupe. We recovered 52 antibiotic-resistant (AR) E. coli strains from 48 of the 884 (5.4%) wild animals tested (46 iguanas, 181 birds, 289 anoles, and 368 rodents at 163 sampling sites). Rodents had higher rates of carriage (n = 38, 10.3%) than reptiles and birds (2.4% and 1.1%, respectively, p < 0.001). A significant association (p < 0.001) was found between the degree of anthropization and the frequency of AR E. coli carriage for all species. The carriage rate of ciprofloxacin- and cefotaxime-resistant isolates was 0.7% (6/884) and 1.5% (13/884), respectively. Most (65.4%) AR E. coli were multi-drug resistant, and the prevalence of extended-spectrum beta-lactamase (ESBL)-producing E. coli was low (n = 7, 0.8%) in all species. Eight ESBL-producing E. coli were recovered, two genetically unrelated isolates being found in one bird. These isolates and 20 human invasive ESBL E. coli isolates collected in Guadeloupe during the same period were investigated by whole genome sequencing. bla CTX-M-1 was the only ESBL gene shared by three animal classes (humans, n = 2; birds, n = 2; rodents, n = 2). The bla CTX-M-1 gene and most of the antimicrobial resistance genes were present in a large conjugative IncI1 plasmid that was highly similar (>99% nucleotide identity) to ESBL-carrying plasmids found in several countries in Europe and in Australia. Although the prevalence of ESBL-producing E. coli isolates was very low in wild animals, it is of concern that the well-conserved IncI1 plasmid-carrying bla CTX-M-1 is widespread and occurs in various E. coli strains from animals and humans.

16.
Pathogens ; 9(6)2020 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-32512696

RÉSUMÉ

Free-living amoebae (FLA) are ubiquitous protists. Pathogenic FLA such as N. fowleri can be found in hot springs in Guadeloupe, soil being the origin of this contamination. Herein, we analyzed the diversity and distribution of FLA in soil using a targeted metataxonomic analysis. Soil samples (n = 107) were collected from 40 sites. DNA was extracted directly from soil samples or from FLA cultivated at different temperatures (30, 37 and 44 °C). Metabarcoding studies were then conducted through FLA 18SrDNA amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against SILVA database using QIIME2 and SHAMAN pipelines. Vermamoeba were detected in DNA extracted directly from the soil, but to detect other FLA an amoebal enrichment step was necessary. V. vermiformis was by far the most represented species of FLA, being detected throughout the islands. Although Naegleria were mainly found in Basse-Terre region, N. fowleri was also detected in Grand Terre and Les Saintes Islands. Acanthamoeba were mainly found in areas where temperature is approx. 30 °C. Vannella and Vahlkampfia were randomly found in Guadeloupe islands. FLA detected in Guadeloupe include both pathogenic genera and genera that can putatively harbor microbial pathogens, therefore posing a potential threat to human health.

17.
Pathogens ; 9(5)2020 May 24.
Article de Anglais | MEDLINE | ID: mdl-32456327

RÉSUMÉ

Detection and quantification of pathogenic free-living amoebae (FLA) in water samples is critical for assessing water quality and for disease management issues. The most probable number (MPN) is commonly used to account for FLA in water. Nevertheless, this requires a high number of water replicates and working volumes, and a consequent number of non-nutrient agar (NNA)-plates seeded with Escherichia coli. Herein, we aimed at optimizing this difficult method, taking also into account key factors such as (i) the counting method, (ii) the delay between sample collection and sample processing, and (iii) the temperature during water sample transportation. To simplify the MPN method, we filtrated 1 × 1000 and 1 × 100 mL water samples, and cellulose acetate filters were cut in 10 parts and inverted on NNA-plates overlaid with E. coli. The comparison between the classical and our optimized MPN method showed that the final counts were similar, therefore validating the use of the optimized method. Our results also showed that for thermophilic FLA (such as Naegleria fowleri), water samples can be kept at around +30°C and processed within 24 h. This improved MPN method is now routinely used in our laboratory to control Naegleria sp. in the water samples in Guadeloupe.

18.
PLoS One ; 14(7): e0220145, 2019.
Article de Anglais | MEDLINE | ID: mdl-31323053

RÉSUMÉ

The epidemiology of human Salmonella enterica infections in Guadeloupe (French West Indies) appears to be specific, with a higher prevalence of the subspecies enterica serovars Panama and Arechavaleta (Panama and Arechavaleta) than in other regions. A study was performed in Guadeloupe to identify the reservoir of Salmonella serovars by comparing their distribution in warm- and cold-blooded animals and in humans living in Guadeloupe and mainland France. Furthermore, a case-control study was conducted in 2012-2013 to identify the main epidemiologic risk factors for S. enterica infection among children under 15 years of age. Between June 2011 and December 2014, feces from 426 reptiles (322 anoles, 69 iguanas and 35 geckos) and 50 frogs distributed throughout Guadeloupe and nearby islands were investigated. The frequency of S. enterica carriage was 15.0% (n = 64) in reptiles but varied by species. The only significant risk factor for S. enterica infection was a more frequent presence of frogs in the houses of cases than in those of controls (P = 0.042); however, isolates were not collected. Panama and Arechavaleta were the two serovars most often recovered between 2005 and 2014 from humans living in Guadeloupe (24.5% (n = 174) and 11.5% (n = 82), respectively), which is in contrast to the low prevalence in mainland France (0.4%). Their presence at low frequencies in wild reptiles (4.6% (n = 3) and 3.1% (n = 2), respectively) and pigs (7.5% (n = 5) and 1.5% (n = 1), respectively) suggests a broad host range, and humans may be infected by indirect or direct contact with animals. These serovars are probably poorly adapted to humans and therefore cause more severe infections. The unusual subspecies houtenae serovar 43:z4,z32:- was a major subspecies in wild reptiles (24.6%, n = 16) and humans (9.4%, n = 67) but was not recovered from warm-blooded animals, suggesting that reptiles plays a key role in human infection.


Sujet(s)
Réservoirs de maladies/microbiologie , Reptiles/microbiologie , Salmonelloses/épidémiologie , Salmonelloses/microbiologie , Salmonelloses/transmission , Salmonella enterica , Animaux , Études cas-témoins , Guadeloupe/épidémiologie , Humains
19.
Virulence ; 10(1): 568-587, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31198092

RÉSUMÉ

Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.


Sujet(s)
Escherichia coli pathogènes extra-intestinales/génétique , Rein/microbiologie , Protéases à sérine/métabolisme , Systèmes de sécrétion de type V/métabolisme , Animaux , Toxines bactériennes/métabolisme , Lignée cellulaire , Infections à Escherichia coli/microbiologie , Escherichia coli pathogènes extra-intestinales/pathogénicité , Femelle , Génome bactérien , Humains , Souris , Phylogenèse , Protéases à sérine/génétique , Systèmes de sécrétion de type V/génétique , Voies urinaires/microbiologie , Virulence
20.
Am J Trop Med Hyg ; 99(3): 584-589, 2018 09.
Article de Anglais | MEDLINE | ID: mdl-30014811

RÉSUMÉ

A retrospective study was conducted to identify the risk factors associated with Salmonella enterica bacteremia in infants and children in Guadeloupe, French West Indies. The 171 patients with S. enterica infection seen between 2010 and 2014 included 155 (90.6%) with acute gastroenteritis, of whom 42 (27.1%) had concomitant bacteremia, and 16 (9.4%) with primary bacteremia. Most cases (97.7%) were in infants and children with no underlying health condition. Two subspecies were recovered: enterica (N = 161, 94.2%) and houtenae (N = 10, 5.8%). All but one (serovar Typhi) were non-typhoidal Salmonella. The most common serovars were Panama (N = 57, 33.3% of isolates) and Arechavaleta (N = 28, 16.4%). Univariate analysis showed a strong association only between age > 6 months and infection with the Panama or Arechavaleta serovar (P = 0.002). The rate of resistance to all classes of antibiotics during the study period was low (< 15%); however, the detection of one extended-spectrum beta-lactamase-producing S. enterica strain highlights the need for continued monitoring of antimicrobial drug susceptibility. Infection with Panama (P < 0.001) or Arechavaleta (P < 0.001) serovar was significantly associated with bacteremia in a multivariate analysis. These serovars are probably poorly adapted to humans or are more virulent. A delay between onset of symptoms and hospital admission > 5 days (P = 0.01), vomiting (P = 0.001), and increased respiratory rate (P = 0.001) contributed independently to bacteremia in the multivariate analysis. Thus, if non-typhoidal infection is suspected, blood should be cultured and antibiotic treatment initiated in all patients who meet these criteria.


Sujet(s)
Bactériémie/épidémiologie , Salmonelloses/sang , Salmonelloses/épidémiologie , Salmonella enterica/pathogénicité , Sérogroupe , Adolescent , Antibactériens/usage thérapeutique , Bactériémie/traitement médicamenteux , Enfant , Enfant d'âge préscolaire , Multirésistance bactérienne aux médicaments , Femelle , Gastroentérite/épidémiologie , Gastroentérite/microbiologie , Hospitalisation/statistiques et données numériques , Humains , Nourrisson , Mâle , Tests de sensibilité microbienne , Analyse multifactorielle , Études rétrospectives , Facteurs de risque , Salmonelloses/traitement médicamenteux , Salmonella enterica/classification , Antilles
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...